
A Goofy Idea for an Exascale File
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation

  Current parallel FS technologies all roughly based on the
same architecture

  Notable differences in metadata management
-  But always some centralized form of management & control

  Utilize storage in much the same way; Striped, static
parameters and fixed locations once written

  Built for POSIX first, seemingly, and high performance
second

  It is appropriate to look at the fundamental architecture
again

  Exascale is coming, just don't know when
-  A potential inflection point
-  My user community has said they could tolerate that, this

one time
  Tweaking and bending

2

Goals

  Storage as a service
  Leverage LWFS where possible and reasonable
  Redesign the storage component, entire

  Symmetric
  Storage servers offer the same API and access to stored data

-  Can provide space or data
-  Alternatively, can help a client locate space or data

  Storage accepts responsibility for data
  Servers cooperate in order to

-  Achieve resilience guarantees
-  Provide bandwidth where and when needed

  Eliminate, at least mitigate, global state
  Heterogeneous media

  Type, from DRAM to tape
  Ages

3

Membership, Command, and Control

  Heavily P2P inspired protocols
  Cooperative servers operate as clients when

relocating or replicating data
  Membership and status information must be

propagated
  But it's a “sin” to use the network
  Piggybacked messages?

-  Opportunistic information propagation implies that
age should be accounted for in making decisions

4

Ingest and Update; Choosing a subset

  Client goal is to reasonably maximize use of the
NIC and path(s) in the network
  Lack of global state implies a greedy approach
  Too greedy (too many servers), though, and

variance becomes an issue
  Initial candidates determined from neighbor

information
  Refined list obtained from a match between

object attributes and server attributes
  Weighted by observed network performance

5

Some Object Attributes

  Many of the usual, of course; time stamps,
permission related, etc.

  Minimum permissible persistence
  Sufficient authoritative copies must exist at the

desired level, or better
  Desired persistence

  Servers are to achieve sufficient authoritative
copies at the desired level, or better
-  Yes, there is API and protocol allowing the protocol

to establish that the guarantee has been achieved

6

Some Server Attributes

  Provide information about
  Capacity, total and used

-  Some idea as to how fast a client might consume
space when writing

  Current and recent load
-  Gauge potential responsiveness

  Persistence quality
-  Suitability as an initial target

  Media performance characteristics
-  Latency and bandwidth

7

Implicit Network Attributes

  Latency, bandwidth, distance
  Provided by low-level network transport

8

Adapt to the Environment

  An initial choice of subset by the client may not
remain optimal
  Think network failure, cross-traffic, servers

unfortunately becoming “hotspots”, low capacity,
etc.

  May not even have been optimal to begin with
-  May learn of better candidates

  We can't change in the middle of a stream!
  Really? Why not?

  Just need a way to reconcile and determine what
is authoritative

9

Byte-granular, Versioned, Segments

  Let me know when you are done laughing
  Server maintains an “interval” database tracking each update

  Client may supply a 64-bit version number
  To be used by both the client and set of servers to reconcile

multiple objects
  Performance

  >10,000 updates/sec
  >100,000 retrieved segments/sec

  Atomic, coherent, and isolates transactions
  New version, not yet integrated, is durable
  But only ~6,000 updates/sec

  Yes, the associated database can outgrow the actual data
  Ok, we may have to admit defeat and move to a block-based

system
  But this gets a fair shot, first!

10

Migration

  Instantiation or update of an object is unlikely to
happen in the final resting place
  Client probably chose based on a desire for

performance
  Can limit the transient risk by choosing the subset

based on advertised persistence, though
  Is even unlikely to have occurred in a “safe” place

  Desired persistence attribute less than the servers
persistence attribute

  But the storage nodes are to assume responsibility
  The client must cooperate and utilize the supplied

protocol

11

Migration Policy

  Instantiation or update of an object with a desired
persistence value greater than the server implies
  A requirement to instantiate or update a copy on

another server or set of servers with “better”
persistence

  Copies and/or erasure codes
  This can be recursive

  The server is motivated to move the data to a “safer”
location

  Which keeps occurring until sufficient copies are
resident on a subset that meets or exceeds the desired
persistence

12

Capacity Management

  Migration will tend to create many redundant copies
  But those nodes must be able to reclaim the space

occupied by those copies
  The entire collection of servers functions as a victim

cache
  A server may reclaim the space if it first can determine

that the persistence guarantees are sufficient
  If they are not, it must make them so

  This mechanism does double-duty
  Reclaim of space by unused copies
  Capacity balance and rebalance

13

You Wanted it Back?

  I'm pretty sure it's in there somewhere
  Unless a critical number of servers have died or

gone offline
-  Just one of many open problems

  But where?
  The system has been allowed to freely move the

objects, only constrained by a persistence
guarantee

14

Finding Authoritative Copies

  Initial, demonstration, method will be a bounded
broadcast
  Similar to early P2P

  While researching
  Probabilistic searches that fall back to bounded

broadcast
-  Unstructured sensor networks have had good

success with this
-  But have issues, requiring shared state in local

groups and timely updates
  A DHT in the lower layers?

15

Achieving Scalable Reads

  Freshly modified objects should offer many copies on
multiple storage nodes

  Yes, there is protocol a client may use to inquire
  Yes, servers may cache information about what other servers

contain
-  But it can become stale

  Older objects or those that migrated quickly to relatively static
locations won't

  Potentially, will need to induce copies on other nodes
  Probably no single method is correct

-  N:M will need to spread many objects
-  N:1 will need to spread one over a large subset

  Many open problems
  Many single-client jobs crawling the data can't avoid contention
  The time to spread copies may be intolerable for large,

cooperative jobs

16

Coherency

  If you must...
  We always require cooperating clients
  For a POSIX interface we could provide local transactions at

the servers
-  Normal BEGIN, END/ABORT

  But expect the client(s) to coordinate multiple servers
  Servers must support PRECOMMIT
  On which the client may supply their own manager to implement

a two-phase protocol
  Alternatively, is our versioned writes support already

sufficient?
  Clients could use a lock manager to control access to segment

versions on update
  Our server could refuse updates if a segment overlaps one or

more with a higher version number
  Again, this requires the clients to cooperate

17

Miscellaneous open questions

  How does one delete an object from this system?
  It appears that the only way is to stomp every

copy in the system, simultaneously
  Else the thing will just freak out and reinstantiate

a “safe” number of copies on a “safe” subset
  How do we tell that an object has become

“unsafe”
  Insufficient copies remain or we need to find a

spare for a missing piece involved in an ECC-
protected segment

18

Conclusion

• A new approach, the storage collective
– <Insert Borg joke here>

• Re-examining fundamental design choices
• Storage assumes direct responsibility for
resilience and integrity
• Scalable write performance
– At all sizes, both N:1 and N:M
– Reads lose, must fix this

• Very much a work-in-progress

19

Thanks!

• To DOE/NNSA and NSF for their continuing
support and encouragement
• To the many people who’ve helped make these
ideas better (workable)
• To you, for your patience and attention

20

